
A Goofy Idea for an Exascale File
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation

  Current parallel FS technologies all roughly based on the
same architecture

  Notable differences in metadata management
-  But always some centralized form of management & control

  Utilize storage in much the same way; Striped, static
parameters and fixed locations once written

  Built for POSIX first, seemingly, and high performance
second

  It is appropriate to look at the fundamental architecture
again

  Exascale is coming, just don't know when
-  A potential inflection point
-  My user community has said they could tolerate that, this

one time
  Tweaking and bending

2

Goals

  Storage as a service
  Leverage LWFS where possible and reasonable
  Redesign the storage component, entire

  Symmetric
  Storage servers offer the same API and access to stored data

-  Can provide space or data
-  Alternatively, can help a client locate space or data

  Storage accepts responsibility for data
  Servers cooperate in order to

-  Achieve resilience guarantees
-  Provide bandwidth where and when needed

  Eliminate, at least mitigate, global state
  Heterogeneous media

  Type, from DRAM to tape
  Ages

3

Membership, Command, and Control

  Heavily P2P inspired protocols
  Cooperative servers operate as clients when

relocating or replicating data
  Membership and status information must be

propagated
  But it's a “sin” to use the network
  Piggybacked messages?

-  Opportunistic information propagation implies that
age should be accounted for in making decisions

4

Ingest and Update; Choosing a subset

  Client goal is to reasonably maximize use of the
NIC and path(s) in the network
  Lack of global state implies a greedy approach
  Too greedy (too many servers), though, and

variance becomes an issue
  Initial candidates determined from neighbor

information
  Refined list obtained from a match between

object attributes and server attributes
  Weighted by observed network performance

5

Some Object Attributes

  Many of the usual, of course; time stamps,
permission related, etc.

  Minimum permissible persistence
  Sufficient authoritative copies must exist at the

desired level, or better
  Desired persistence

  Servers are to achieve sufficient authoritative
copies at the desired level, or better
-  Yes, there is API and protocol allowing the protocol

to establish that the guarantee has been achieved

6

Some Server Attributes

  Provide information about
  Capacity, total and used

-  Some idea as to how fast a client might consume
space when writing

  Current and recent load
-  Gauge potential responsiveness

  Persistence quality
-  Suitability as an initial target

  Media performance characteristics
-  Latency and bandwidth

7

Implicit Network Attributes

  Latency, bandwidth, distance
  Provided by low-level network transport

8

Adapt to the Environment

  An initial choice of subset by the client may not
remain optimal
  Think network failure, cross-traffic, servers

unfortunately becoming “hotspots”, low capacity,
etc.

  May not even have been optimal to begin with
-  May learn of better candidates

  We can't change in the middle of a stream!
  Really? Why not?

  Just need a way to reconcile and determine what
is authoritative

9

Byte-granular, Versioned, Segments

  Let me know when you are done laughing
  Server maintains an “interval” database tracking each update

  Client may supply a 64-bit version number
  To be used by both the client and set of servers to reconcile

multiple objects
  Performance

  >10,000 updates/sec
  >100,000 retrieved segments/sec

  Atomic, coherent, and isolates transactions
  New version, not yet integrated, is durable
  But only ~6,000 updates/sec

  Yes, the associated database can outgrow the actual data
  Ok, we may have to admit defeat and move to a block-based

system
  But this gets a fair shot, first!

10

Migration

  Instantiation or update of an object is unlikely to
happen in the final resting place
  Client probably chose based on a desire for

performance
  Can limit the transient risk by choosing the subset

based on advertised persistence, though
  Is even unlikely to have occurred in a “safe” place

  Desired persistence attribute less than the servers
persistence attribute

  But the storage nodes are to assume responsibility
  The client must cooperate and utilize the supplied

protocol

11

Migration Policy

  Instantiation or update of an object with a desired
persistence value greater than the server implies
  A requirement to instantiate or update a copy on

another server or set of servers with “better”
persistence

  Copies and/or erasure codes
  This can be recursive

  The server is motivated to move the data to a “safer”
location

  Which keeps occurring until sufficient copies are
resident on a subset that meets or exceeds the desired
persistence

12

Capacity Management

  Migration will tend to create many redundant copies
  But those nodes must be able to reclaim the space

occupied by those copies
  The entire collection of servers functions as a victim

cache
  A server may reclaim the space if it first can determine

that the persistence guarantees are sufficient
  If they are not, it must make them so

  This mechanism does double-duty
  Reclaim of space by unused copies
  Capacity balance and rebalance

13

You Wanted it Back?

  I'm pretty sure it's in there somewhere
  Unless a critical number of servers have died or

gone offline
-  Just one of many open problems

  But where?
  The system has been allowed to freely move the

objects, only constrained by a persistence
guarantee

14

Finding Authoritative Copies

  Initial, demonstration, method will be a bounded
broadcast
  Similar to early P2P

  While researching
  Probabilistic searches that fall back to bounded

broadcast
-  Unstructured sensor networks have had good

success with this
-  But have issues, requiring shared state in local

groups and timely updates
  A DHT in the lower layers?

15

Achieving Scalable Reads

  Freshly modified objects should offer many copies on
multiple storage nodes

  Yes, there is protocol a client may use to inquire
  Yes, servers may cache information about what other servers

contain
-  But it can become stale

  Older objects or those that migrated quickly to relatively static
locations won't

  Potentially, will need to induce copies on other nodes
  Probably no single method is correct

-  N:M will need to spread many objects
-  N:1 will need to spread one over a large subset

  Many open problems
  Many single-client jobs crawling the data can't avoid contention
  The time to spread copies may be intolerable for large,

cooperative jobs

16

Coherency

  If you must...
  We always require cooperating clients
  For a POSIX interface we could provide local transactions at

the servers
-  Normal BEGIN, END/ABORT

  But expect the client(s) to coordinate multiple servers
  Servers must support PRECOMMIT
  On which the client may supply their own manager to implement

a two-phase protocol
  Alternatively, is our versioned writes support already

sufficient?
  Clients could use a lock manager to control access to segment

versions on update
  Our server could refuse updates if a segment overlaps one or

more with a higher version number
  Again, this requires the clients to cooperate

17

Miscellaneous open questions

  How does one delete an object from this system?
  It appears that the only way is to stomp every

copy in the system, simultaneously
  Else the thing will just freak out and reinstantiate

a “safe” number of copies on a “safe” subset
  How do we tell that an object has become

“unsafe”
  Insufficient copies remain or we need to find a

spare for a missing piece involved in an ECC-
protected segment

18

Conclusion

• A new approach, the storage collective
– <Insert Borg joke here>

• Re-examining fundamental design choices
• Storage assumes direct responsibility for
resilience and integrity
• Scalable write performance
– At all sizes, both N:1 and N:M
– Reads lose, must fix this

• Very much a work-in-progress

19

Thanks!

• To DOE/NNSA and NSF for their continuing
support and encouragement
• To the many people who’ve helped make these
ideas better (workable)
• To you, for your patience and attention

20

